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Abstract

Two methods of fluid–structure coupling for turbomachinery are presented, the first one in the frequency domain and

the second in both frequency and time domains. In both methods, the structure and the fluid are assumed to have

circumferential cyclic symmetric properties and the unsteady aerodynamic forces are assumed to be linear in terms of the

structural displacements. The motion equation of the reference sector in the travelling wave coordinates is projected on the

complex eigenmodes for each phase number. The generalized unsteady aerodynamic forces are computed by solving the

Euler equations and by assuming the structural motion to be harmonic with a constant phase angle between two adjacent

sectors. In the frequency domain, the complex, nonlinear eigenvalue problem for the aeroelastic stability analysis is solved

iteratively either by the double scanning method or by using Karpel’s minimum state smoothing of the aerodynamic

coefficient matrix. In the time domain, Karpel’s smoothing method is used to obtain an approximation of the generalized

unsteady aerodynamic forces by means of auxiliary state variables. These coupling methods are tested on a compressor

blade row and the good agreement obtained between their results and those of the direct coupling method shows that the

proposed numerical methods, already used in aircraft applications, are adapted to turbomachinery.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is concerned with the coupled fluid–structure dynamic analysis of turbomachinery. The structure consists

of a rotating bladed disk submitted to the unsteady aerodynamic forces exerted by the fluid, which are themselves

generated by the structural motion. In this paper, the structure and the fluid are assumed to have a perfect

circumferential cyclic symmetry, so that the classical reduction of the analysis to only one reference sector can be

applied. The case of mistuned bladed disks in which the cyclic symmetry is slightly broken is not considered. The

properties of structures with cyclic symmetry are obtained from the wave propagation theory in periodic structures

(Brillouin, 1946; Mead, 1975; Orris and Petyt, 1974; Thomas, 1979; Wildheim, 1979) and can also be derived from the

theory of finite groups (Miller, 1981; Valid and Ohayon, 1985). They have been applied to rotating systems such as

flexible rotors or disk–blade assemblies (G!eradin and Kill, 1986; M!ezi"ere, 1994; Jacquet-Richardet et al., 1996) and can

be combined with model order reduction methods such as component mode synthesis (Henry, 1980; Elhami et al., 1993;

Tran, 2000, 2001).

Aeroelasticity formulations for turbomachinery applications, i.e., the coupling of the structural dynamic and the

unsteady aerodynamic models, were reviewed by Crawley (1988) and Marshall and Imregun (1996). The structural
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motion equation is usually projected on structural modes. Several types of modes are proposed to represent the

structural dynamic model and to compute the unsteady aerodynamic forces: reference sector travelling wave modes

(Jacquet-Richardet and Henry, 1994; Tran et al., 2001), structure standing wave modes (Lalanne and Touratier, 1998;

Lalanne et al., 1998) isolated reference sector component modes (Jacquet-Richardet and Dal-Ferro, 1995), isolated disk

and blade component modes (Berthillier et al., 1997, 1998), etc.

Using the cyclic symmetry properties, the study of the whole structure comes down to that of the reference sector by

applying the appropriate boundary conditions for each phase number. After finite element discretization, we obtain the

equation of motion of the reference sector in the travelling wave coordinates in which the rotational effects are taken

into account. For each phase number, the complex modes of the reference sector are computed using the symmetric

cyclic boundary conditions and by neglecting the damping and gyroscopic matrices. The displacements of the reference

sector are then expressed as a linear combination of the complex modes and the motion equations are projected on these

modes to obtain a reduced system. Other projection bases such as Craig and Bampton’s (1968) can be used, for

example, to take into account structural nonlinearities.

The unsteady aerodynamic forces are assumed to depend linearly on the structural displacements and velocities and

they are expressed in terms of those induced by the modes. The mode-induced aerodynamic forces are computed by

using an aerodynamic code (solving the Euler equations) with the assumption of harmonic motion of the modes, for an

inter-blade phase angle and a number of reduced oscillation frequencies. In the proposed indirect coupling methods, the

aerodynamic forces are determined only once at the beginning of the simulation and the structural motion does not

interact directly on the aerodynamic forces but only via the structural modes, thanks to the hypotheses of linearized

aerodynamics and harmonic motion. These assumptions are removed in the direct coupling method where the

structural motion equation, projected or not on the modes, and the fluid equations are solved alternately at each time

step, with the data transferred from one computation to the next one (as boundary conditions or pressure load) via the

fluid–structure interface (Maman and Farhat, 1995; Farhat et al., 1995; Jacquet-Richardet and Rieutord, 1998; Sayma

et al., 2000; Grisval and Liauzun, 1999, 2000). Another possibility would consist in solving simultaneously the motion

equations of the structure and the fluid by using the same type of discretization and numerical solution methods for

both domains, but this fully coupled technique requires a lot of computational time and is not easy to handle.

In the coupling methods used here, the projection of the mode-induced aerodynamic forces on the modes provides a

complex matrix of aerodynamic coefficients whose product with the modal coordinates represents the generalized

aerodynamic forces in the frequency domain. Introducing the aerodynamic coefficient matrix in the reduced system for

the stability analysis, we obtain a nonlinear eigenvalue system in which the matrix depends on the unknown eigenvalue.

This flutter equation is solved by using two well-known iterative techniques that have been used for the aeroelastic

stability of aircraft (Mastroddi and Gennaretti, 2001). The first one is the double scanning method (Dat and Meurzec,

1969) (also called p–k method) in which the unknown eigenvalues are replaced by their imaginary parts when evaluating

the aerodynamic coefficient matrix. The second one uses the frequency-domain expression of the aerodynamic

coefficient matrix obtained from Karpel’s minimum state smoothing method based on an approximation by rational

functions (Karpel, 1982; Roberts, 1991; Poirion, 1995). The stability of the system is determined by considering the

damping of each aeroelastic mode.

In the time domain, the generalized aerodynamic forces for an arbitrary motion cannot be expressed as the product of

the aerodynamic coefficient matrix with the generalized coordinates. Karpel’s minimum state smoothing of the

aerodynamic coefficient matrix is used to obtain a time-domain approximation of the generalized aerodynamic forces by

means of auxiliary state variables. The reduced coupled system is solved by using a Newmark second-order time scheme

(Newmark, 1959; Bathe, 1996). Structural nonlinearities such as friction or free-play can then be taken into account. This

numerical strategy is applied to a compressor blade for different configurations (phase numbers, rotation speeds). The

results are compared between the proposed methods and also to those obtained using the direct coupling method.

This paper is organized as follows: in Section 2, the properties of structures with cyclic symmetry are reviewed. The

coupling method based on the projection on the complex modes is presented in Section 3. The computation of the generalized

unsteady aerodynamic forces is described in Section 4. The solution of the coupled system using the double scanning method

and the minimum state smoothing method is presented in Section 5. Finally, a numerical example is studied in Section 6.

2. Structure with cyclic symmetry

2.1. Reduction to the reference sector

A structure with cyclic symmetry is composed of N identical sectors S0;S1;y;SN�1 which close up on themselves to

form a circular system. The whole structure is obtained by N � 1 repeated rotations of a reference sector S0 through the
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angle b ¼ 2 p=N: Each sector is limited by a left frontier Ll and a right frontier Lr with the adjacent sectors. The fluid

surrounding the structure is also assumed to have the same cyclic symmetry while the external forces applied on the

structure can vary arbitrarily from one sector to another sector.

The physical displacement at the instant t of a point M of the structure with cylindrical coordinates ðr; y; zÞ can be

written as, by using a Fourier decomposition:

uðr; y; z; tÞ ¼ Re
XþN

p¼�N

upðr; z; tÞeipy
( )

; ð1Þ

where ReðzÞ is the real part of z and i2 ¼ �1: By regrouping the terms, we obtain:

uðr; y; z; tÞ ¼ Re
XN�1

n¼0

XþN

q¼�N

uqNþnðr; z; tÞeiðqNþnÞy

( )
¼ Re

XN�1

n¼0

unðr; y; z; tÞ

( )
; ð2Þ

where unðr; y; z; tÞ ¼
PþN

q¼�N
uqNþnðr; z; tÞeiðqNþnÞy is the complex travelling wave coordinate corresponding to the phase

number n; for n ¼ 0;y;N � 1:
The travelling wave coordinates un of sector Sk; for k ¼ 0;y;N � 1; are connected to those of the reference sector S0

by the cyclic symmetry equation:

unðr; yþ kb; z; tÞ ¼ unðr; y; z; tÞeiksn ; ð3Þ

where sn ¼ nb is the phase angle corresponding to the phase number n:
From Eq. (3), the travelling wave coordinates of the left and the right frontiers of any sector satisfy then the cyclic

symmetry boundary condition:

unjLl
¼ unjLr

eisn : ð4Þ

Using the cyclic symmetry properties Eq. (3), the motion equation of the structure comes down to N motion equations

of the reference sector S0; in terms of the travelling wave coordinates un and with the appropriate second members and

boundary conditions. Only sector S0 has then to be modelized and, after a finite element discretization, the following

reduced matrix systems will be solved to obtain the vector of the travelling wave coordinates un ¼ unðS0; tÞ of sector S0;
for each phase number n ¼ 0;y;N � 1:

Kun þ C’un þM.un ¼ fanðun; ’unÞ þ fn þ rn; ð5Þ

fan ¼
1

N

XN�1

k¼0

faðSkÞe�iksn and fn ¼
1

N

XN�1

k¼0

fðSkÞe�iksn ; ð6Þ

unjLl
¼ unjLr

eisn : ð7Þ

K is the stiffness matrix of sector S0; including the centrifugal stress stiffening and the spin softening effects, C is the

damping and gyroscopic effect matrix and M is the mass matrix. faðSkÞ is the vector of the aerodynamic forces applied
to sector Sk and which depends on the displacements and the velocities of sector Sk: fðSkÞ is the vector of the other
external forces applied to sector Sk; including the centrifugal forces. rn is the vector of the interface reactions applied to

the frontiers of S0 with the adjacent sectors, it does not intervene in the solutions of Eqs. (5)–(7) and it is only present

due to the constraints Eq. (7). The cyclic symmetry boundary conditions Eq. (7) are expressed in the cylindrical

coordinate system.

The vector of the real, physical displacements of sector Sk are obtained from the travelling wave coordinates un by

using Eqs. (2) and (3):

uðSk; tÞ ¼ Re
XN�1

n¼0

une
iksn

( )
: ð8Þ

It is remarked that, since the travelling wave coordinates um satisfy Eq. (3) with the phase angle sm ¼ mb and the fluid is
assumed to have the same cyclic symmetry, the physical aerodynamic forces faðSk; um; ’umÞ induced by um on sector Sk

satisfy:

faðSk; um; ’umÞ ¼ faðS0; um; ’umÞeiksm : ð9Þ
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From Eqs. (6) and (9), the aerodynamic forces induced by um on the travelling wave coordinates un of S0 are then

fanðum; ’umÞ ¼
1

N

XN�1

k¼0

faðSk; um; ’umÞe�iksn ¼ faðS0; um; ’umÞdmn; ð10Þ

where dmn is the Kronecker symbol. Thus, the aerodynamic forces fan applied to the coordinates un in Eq. (5) depend

only on un and not on the other travelling wave coordinates, and they are equal to the physical aerodynamic forces

faðS0; un; ’unÞ induced by un on sector S0: This property is also valid for any other rotating external force satisfying

Eq. (9), and in particular for the case m ¼ 0 where the applied external forces are the same on all sectors.

2.2. Eigenfrequencies and modes of the undamped structure in vacuum

The eigenfrequencies and modes of the undamped structure in vacuum are obtained by solving the following complex

eigenvalue system, for each phase number n ¼ 0;y;N � 1:

KUn �MUnX*2
n ¼ Rmn; ð11Þ

UnjLl
¼ UnjLr

eisn ; ð12Þ

where Xn

n ¼ diagðon
n;1;y;on

n;mn
Þ and Un ¼ ½Un;1;y;Un;mn

� are the matrices of the mn real frequencies and complex

modes for the phase number n and Rmn are the modal reactions. The eigensystem Eqs. (11) and (12) is real for n ¼ 0 or

n ¼ N=2 (if N is even), otherwise it is complex and the solutions corresponding to the phase numbers n and N � n are

complex conjugate. By convention, we will denote by �n the phase number N � n for 0onoN=2: Consequently, we
only have to solve Eqs. (11) and (12) for N=2þ 1 or ðN þ 1Þ=2 values of n; depending upon whether N is even or odd.

The structure has double modes since the frequencies corresponding to the complex conjugate modes for the phase

numbers n and �n are the same:

X�n ¼ Xn and U�n ¼ Un for 0onoN=2: ð13Þ

The real, physical eigenmodes U1
n of the structure on sector Sk are obtained by keeping only the modes Un and U�n in

Eq. (8):

U1
nðSkÞ ¼ ReðUne

iksn þ U�ne
iks�n Þ ¼ 2½ReðUnÞ cos ksn � ImðUnÞ sin ksn�; ð14Þ

where ImðzÞ is the imaginary part of z: For 0onoN=2; if the complex eigenmodes Un are normalized so that
tUnMUn ¼ I; then zUn are also eigenmodes with the same norm for any complex number z satisfying jzj ¼ 1: By
choosing for example z ¼ i; the second real, physical eigenmodes U2

nðSkÞ associated with the double frequencies are

obtained by replacing Un by iUn in Eq. (14) and they are deduced from U1
n by a rotation of angle p=ð2 nÞ: For n ¼ 0 and

n ¼ N=2; the frequencies are distinct and Un are real, thus: U1
nðSkÞ ¼ U2

nðSkÞ ¼ 2Un cos ksn:

3. Reduced coupled system

3.1. Modal projection for stability analysis and forced response

For each phase number n; the travelling wave coordinates are expressed as a linear combination of the complex

modes:

un ¼ Unqn; ð15Þ

where qnðtÞ is the vector of the mn complex modal coordinates.

Introducing Eq. (15) in the equation of motion (5) and premultiplying by tUn; we obtain the reduced coupled system:

Kgnqn þ Cgn ’qn þMgn .qn ¼ fagnðUnqn;Un ’qnÞ þ fgn; ð16Þ

with Kgn ¼ tUnKUn; Cgn ¼ tUnCUn; Mgn ¼ tUnMUn; fagn ¼ tUnfan and fgn ¼ tUnfn; Kgn and Mgn are the diagonal, real

generalized stiffness and mass matrices, Cgn is the complex generalized damping and gyroscopic effect matrix, fagn and

fgn are the complex generalized aerodynamic and external forces. As the modes Un have already satisfied the cyclic

symmetry boundary conditions Eq. (7), the latter are already taken into account and by consequent the interface

reactions disappear from Eq. (16). In general, Eq. (16) should be solved for each phase number n ¼ 0;y;N � 1 as we

no longer have u�n ¼ un for 0onoN=2; except when C ¼ 0:
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For the aeroelastic stability analysis, all the external forces are null except the aerodynamic forces. The solutions are

looked up under the form:

unðtÞ ¼ *un e
pt and qnðtÞ ¼ *qne

pt with p ¼ ioð1þ iaÞ; ð17Þ

where o is the unknown aeroelastic eigenfrequency ðo > 0Þ and a is the unknown aeroelastic damping factor ðaARÞ:
Using the hypothesis of linearity, the aerodynamic forces become:

fanðUnqn;Un ’qnÞ ¼ FanðUn e
pt;UnpeptÞ*qn ¼ *FanðUn; pÞ*qne

pt; ð18Þ

where FanðUne
pt;UnpeptÞ is the matrix whose ith column is the aerodynamic force induced by the displacement Un;ie

pt:
The generalized aerodynamic forces are written in the form:

fagnðUnqn;Un ’qnÞ ¼ tUn
*FanðUn; pÞ*qne

pt ¼ *FagnðUn; pÞ*qne
pt: ð19Þ

Substituting Eqs. (17) and (19) in Eq. (16), we obtain the flutter equation:

½Kgn þ pCgn þ p2Mgn � *FagnðUn; pÞ�*qn ¼ 0; ð20Þ

which is a complex, nonlinear eigenvalue system in which the aerodynamic coefficient matrix *FagnðUn; pÞ depends on the
complex modes Un and the unknown complex eigenvalue p: An approximated expression of *FagnðUn; pÞ in terms of p

can be obtained by Karpel’s minimum state smoothing method from the tabulated values of *FagnðUn; pÞ computed at

discrete frequencies, i.e. for p ¼ io1;y; iono :
For the frequency response to a harmonic external force fnðtÞ ¼ *fne

iot where o is a given excitation frequency, the

solution is looked up under the form unðtÞ ¼ *une
iot and qnðtÞ ¼ *qne

iot: Substituting Eqs. (17)–(19) in Eq. (16) with

p ¼ io; we obtain a linear system for the frequency response *qnðoÞ in which the aerodynamic coefficient matrix
*FagnðUn; ioÞ is perfectly determined:

½Kgn þ ioCgn � o2Mgn � *FagnðUn; ioÞ�*qn ¼ *fgn: ð21Þ

For the time response, Karpel’s minimum state approximation is used to obtain a time-domain expression of the

generalized aerodynamic forces from the tabulated aerodynamic coefficient matrices:

fagnðUnqn;Un ’qnÞ ¼ fagnðUn; qn; ’qn; .qn; znÞ; ð22Þ

where zn are the auxiliary state variables. The time integration is then performed simultaneously on the reduced coupled

system Eq. (16) and the differential equations introduced by the auxiliary variables.

3.2. The Craig and Bampton projection basis

In order to take into account structural nonlinearities such as friction or free-play in the reduced coupled system

Eq. (16), we need to keep some physical coordinates among the generalized coordinates qn: These ‘‘nonlinear’’

coordinates unjNL can be for example the displacements of the reference sector nodes located at the junction between the

blade and the disk, where friction dampers are introduced. For this aim, the Craig and Bampton (1968) projection basis

is used instead of the eigenmodes of the structure. It is composed of two sets of vectors:

(i) the first mn complex eigenmodes Un of the undamped reference sector in vacuum, obtained by applying the cyclic

symmetry boundary conditions Eq. (7) and by holding unjNL fixed:

KUn �MUnX*2
n ¼ Rmn with UnjLl

¼ UnjLr
eisn and UnjNL ¼ 0; ð23Þ

(ii) the constraint modes Wcn which are the complex static solutions of the reference sector obtained by applying the

cyclic symmetry boundary conditions Eq. (7) and by imposing successively a unit displacement on one coordinate

of unjNL; while holding the remaining coordinates of unjNL fixed:

KWcn ¼ Rcn with WcnjLl
¼ WcnjLr

eisn and WcnjNL ¼ I: ð24Þ

The travelling wave coordinates of the reference sector are then expressed as a linear combination of the vectors of the

Craig and Bampton basis:

un ¼ Ungn þ WcnunjNL ¼ Qnqn; ð25Þ

with Qn ¼ ½Un;Wcn�; qn ¼ t½tgn;
tunjNL� and gn is the vector of the modal generalized coordinates.

Introducing Eq. (25) in the equation of motion Eq. (5) and premultiplying by tQn; we obtain a complex reduced

coupled system similar to Eq. (16):

Krnqn þ Crn ’qn þMrn .qn ¼ fagnðQnqn;Qn ’qnÞ þ fgn; ð26Þ
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where Krn ¼ tQnKQn; Crn ¼ tQnCQn and Mrn ¼ tQnMQn are the complex reduced stiffness, damping and mass

matrices and fagn ¼ tQnfan and fgn ¼ tQnfn are the complex generalized unsteady aerodynamic and external forces. As

in Eq. (16), the cyclic symmetry boundary conditions are already taken into account in the Craig and Bampton basis, so

the interface reactions disappear in Eq. (26). The size of the reduced system Eq. (26) is the number of eigenmodes plus

the number of the nonlinear coordinates.

4. Computation of the generalized aerodynamic forces

4.1. Generalized aerodynamic forces

The unsteady aerodynamic forces are computed from a basis of mn real mode shapes W of the reference sector, for an

oscillation frequency o and an inter-blade phase angle sn: By expressing the displacements of the reference sector as a
linear combination of the modes W and by assuming that the structural motion is harmonic and that all the sectors have

the same motion with a constant phase angle sn between two adjacent sectors, i.e.,

unðtÞ ¼ unðS0; tÞ ¼ W*qne
iot and unðSk; tÞ ¼ W*qne

ioteiksn ; ð27Þ

the generalized aerodynamic forces generated by the displacement unðtÞ are written, by linearity, as

fagnðunðtÞ; ’unðtÞÞ ¼ tWFanðW; io; tÞ*qn ¼ FagnðW; io; tÞ*qn: ð28Þ

FanðW; io; tÞ is the matrix whose jth column is the unsteady aerodynamic force fanðWj ; io; tÞ generated by the harmonic

motion of the jth mode and FagnðW; io; tÞ ¼ tWFanðW; io; tÞ is the time-dependant aerodynamic coefficient matrix.
The unsteady aerodynamic force generated at a point M of the surface S of the structure by the harmonic motion of

the jth mode is given by

fan

-

ðM;Wj ; io; tÞ ¼ �½PnðM;Wj ; io; tÞ � PsðMÞ� n
-
ðMÞ dS for MAS; ð29Þ

where Pn is the unsteady pressure, Ps the steady pressure, ~nn is the unit external normal vector to the surface S and dS is

an elementary surface of S: Taking the scalar product of this unsteady aerodynamic force and the displacement vector
~CCiðMÞ of the ith mode at the point M and integrating over the surface S; we obtain the ði; jÞ-term of the aerodynamic

coefficient matrix FagnðW; io; tÞ:

tWifanðWj ; io; tÞ ¼ �
Z

MAS
½PnðM;Wj ; io; tÞ � PsðMÞ� n

-
ðMÞ 	Ci

-
ðMÞ dS: ð30Þ

We introduce the aerodynamic coefficient matrix AnðW; io; tÞ obtained from the integral in Eq. (30) with Pn and Ps

replaced by the associated pressure coefficient CP ¼ ðP � PNÞ=ð1
2
r
N

V2
N
Þ; where PN; r

N
and VN are the pressure, the

density and the velocity of the upstream unperturbed fluid. By performing a Fourier analysis of FagnðW; io; tÞ and by

keeping only the first harmonic term, we have:

FagnðW; io; tÞC *FagnðW; ioÞeiot ¼ �1
2 rNV2

N
*AnðW; ioÞeiot: ð31Þ

The generalized aerodynamic forces generated by the displacement unðtÞ become:

fagnðunðtÞ; ’unðtÞÞC *FagnðW; ioÞ*qne
iot ¼ �1

2
r
N

V2
N

*AnðW; ioÞ*qne
iot: ð32Þ

*FagnðW; ioÞ and *AnðW; ioÞ are complex, asymmetric square matrices of dimension mn: In practice, they are computed for
no oscillation frequencies o1;y;ono :

4.2. Aerodynamic coefficient matrix for complex modes

In the previous section, the aerodynamic coefficient matrices *FagnðW; ioÞ and *AnðW; ioÞ were computed from a basis of

real mode shapes W: In the flutter equation (20), the aerodynamic coefficient matrix should be determined from the mn

complex modes Un; for 0onoN=2: Denoting by U0
n and U00

n the real and imaginary parts of Un; the aerodynamic

coefficient matrix *FagnðUn; ioÞ generated by the complex modes Un is written as, using the linearity hypothesis:

*FagnðUn; ioÞ ¼ tUn
*FanðUn; ioÞ ¼ ½tU0

n � itU00
n �½ *FanðU0

n; ioÞ þ i *FanðU00
n ; ioÞ�: ð33Þ
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The matrices which compose *FagnðUn; ioÞ can be extracted from the aerodynamic coefficient matrix obtained by using

the basis of the 2mn real vectors formed by U0
n and U00

n : We indeed have

*Fagnð½U0
n;U

00
n �; ioÞ ¼

tU0
n
*FanðU0

n; ioÞ
tU0

n
*FanðU00

n ; ioÞ
tU00

n
*FanðU0

n; ioÞ
tU00

n
*FanðU00

n ; ioÞ

" #
: ð34Þ

4.3. Aerodynamic computations

The unsteady aerodynamic forces are obtained solving the Euler equations for an ideal gas using an aerodynamic

code called CANARI and developed for years at ONERA (Dugeai et al., 2000). This code is based on the finite volume

method. The time integration is performed using a 3-D cell-centered Jameson-like four stages Runge–Kutta scheme

(Jameson et al., 1981). Second- and fourth-order artificial viscosity terms are added to improve the stability when strong

nonlinearities like shocks occur. Because of the cyclic symmetry of the flow, a chorochronic boundary condition is

applied to the simulated channel. This condition reads:

F ðr; yþ kb; z; tÞ ¼ F r; y; z; t þ
ksn

o

� 	
for n ¼ 0;y;N � 1 and 8kAN; ð35Þ

where F is any flowfield variable, r is the rotation radius, and y the azimuthal angle. The following condition is applied
at the outflow:

@P

@r
¼ r

V2
abs;tang

r
ð36Þ

where P is the pressure, r is the density, and Vabs;tang is the tangent component of the velocity expressed in a nonrotating

frame of reference.

In a first step, a steady state is computed depending on the rotation speed, on the pressure ratio and on the far-field

total temperature, total pressure, and velocity. In a second step, unsteady simulations are performed by forcing an

oscillating blade motion at different frequencies. These simulations depend on the steady flowfield previously computed

and used as initial conditions, on the inter-blade phase angle, and on the forced motion shape and frequency. A blowing

condition is then used to simulate the blade motion. Once a pseudo-steady oscillating state has been reached (no

transient effect), a Fourier transform is performed over the pressure to get the unsteady aerodynamic forces.

5. Solution of the coupled system

5.1. Double scanning method

The flutter equation (20) is written using the aerodynamic coefficient matrix *AnðUn; pÞ defined in Eq. (32):

½Kgn þ pCgn þ p2Mgn þ 1
2
r
N

V2
N

*AnðUn; pÞ�*qn ¼ 0: ð37Þ

For motions defined by Eq. (17) in the frequency domain, *AnðUn; pÞ depends only on the quotient pc=VN and can be

written as

*AnðUn; pÞ ¼ *AnðUn; pc=VNÞ ¼ *A0
nðUn; pc=VNÞ þ i *A00

nðUn; pc=VNÞ; ð38Þ

where c is a reference length, for example the blade chord, *A0
nðUn; pc=VNÞ and *A00

nðUn; pc=VNÞ are the real and

imaginary parts of *AnðUn; pc=VNÞ: Substituting Eq. (38) into Eq. (37), we obtain

½Kn

gnðpc=VNÞ þ pCn

gnðpc=VNÞ þ p2Mgn�*qn ¼ 0; ð39Þ

with

Kn

gnðpc=VNÞ ¼ Kgn þ 1
2
r
N

V2
N

*A0
nðUn; pc=VNÞ;

Cn

gnðpc=VNÞ ¼ Cgn þ i 1
2

cr
N

VN

*A00
nðUn; pc=VNÞ

pc=VN

:
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Let us consider the reduced frequency

k ¼ oc=VN: ð40Þ

For a small damping factor, jaj51; the following approximations can be made:

*AnðUn; pc=VNÞC *AnðUn; ikÞ ¼ *A0
nðUn; ikÞ þ i *A00

nðUn; ikÞ; ð41Þ

Kn

gnðpc=VNÞCKn

gnðikÞ ¼ Kgn þ 1
2
r
N

V2
N

*A0
nðUn; ikÞ; ð42Þ

Cn

gnðpc=VNÞCCn

gnðikÞ ¼ Cgn þ 1
2

cr
N

VN
*A00

nðUn; ikÞ=k: ð43Þ

Substituting Eqs. (42) and (43) in Eq. (39), we obtain an approximate flutter equation:

½Kn

gnðikÞ þ pCn

gnðikÞ þ p2Mgn�*qn ¼ 0 with k ¼ ImðpÞc=VN; ð44Þ

which can be written under the form of a nonlinear eigenvalue system of dimension 2mn:

0 I

�M�1
gn K

n

gnðikÞ �M�1
gn C

n

gnðikÞ

" #
*qn

p*qn

( )
¼ p

*qn

p*qn

( )
; ð45Þ

or

HðikÞx ¼ px with k ¼ ImðpÞc=VN: ð46Þ

The matrices Kn

gnðikÞ; C
n

gnðikÞ and HðikÞ are real and depend on *A0
nðUn; ikÞ; *A00

nðUn; ikÞ and the upstream infinite velocity

VN: The aerodynamic coefficient matrices *A0
nðUn; ikÞ and *A00

nðUn; ikÞ have been tabulated for nk increasing reduced

frequencies k1;y; knk : The eigensolutions ðp; xÞ of Eq. (45) are computed for nV increasing velocities V1
N
;y;VnV

N
and

should satisfy o ¼ ImðpÞ ¼ kVN=c: For each velocity Vk
N
; the following eigensystems are solved, for i ¼ 1;y; 2mn and

j ¼ 0; 1; 2;y; until the convergence on k is obtained:

Hðiki;jÞxi;jþ1 ¼ pi;jþ1xi;jþ1 with ki;j ¼ oi;jc=Vk
N

¼ Imðpi;jÞc=Vk
N
; ð47Þ

where ðpi;j ; xi;jÞ is the ith eigensolution obtained at the jth iteration. The matrix Hðiki;jÞ is computed by interpolating
*A0

nðUn; ikÞ and *A00
nðUn; ikÞ=k from the tabulated values. The starting frequencies oi;0 are obtained by extrapolating the

frequencies at Vk�1
N

and Vk�2
N

if k > 2: For the second velocity V2
N
; oi;0 are the frequencies obtained at V1

N
and for the

first velocity V1
N
; oi;0 are the frequencies of the structure in vacuum.

This iterative process amounts to performing a double scanning, the first one on VN and the second one on k; and to
finding out, for each velocity Vk

N
; the intersections between the straight line o ¼ ðVk

N
=cÞk and the evolution curves of

the frequencies in function of k; oi ¼ ImðpiðkÞÞ; obtained by interpolating the imaginary parts of the eigenvalues of

Hðik1Þ;y;Hðiknk Þ:
This method allows the determination of all the eigenvalues required for the stability analysis. We obtain the

evolution of the aeroelastic frequencies and dampings as functions of the velocity or the mass flow of the upstream

unperturbed fluid. Flutter occurs if the damping factor a is negative.

It is remarked that the double scanning method is not valid for small velocities since the latter lead to very large

reduced frequencies which will be out of the range of the tabulated values, and therefore the extrapolation of the

aerodynamic coefficient matrix from the tabulated ones in the iterative solution of Eq. (46) will give incorrect results.

5.2. Minimum state smoothing method

The aerodynamic coefficient matrix *AnðUn; ioÞ has been computed for nk reduced frequencies k1;y; knk defined by

Eq. (40) with the assumption of harmonic motion. For arbitrary motions like those defined by Eq. (17), it is necessary

to extend the values of the aerodynamic coefficient matrix to an area of the complex plane containing the imaginary

axis, i.e. to determine *AnðUn; pÞ for p ¼ ioð1þ iaÞ with aa0:
The minimum state smoothing method (Karpel, 1982, 1990) consists in modelling the generalized aerodynamic forces

by using a rational approximation and auxiliary state variables:

*AnðUn; pÞCAn0 þ
pc

VN

An1 þ
p2c2

V2
N

An2 þ
pc

VN

Dn
pc

VN

I� Rn


 ��1
En: ð48Þ

The matrices An0; An1; An2; Dn; Rn and En are real with dimensions ðmn � mnÞ for An0; An1 and An2; ðmn � npÞ for Dn;
ðnp � mnÞ for En and Rn ¼ diagðr1;y; rnp

Þ where np is the degree of the denominator of the rational function or the
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number of poles and rio0 are the poles. These matrices are computed by using a method of least squares minimization;

see Appendix A and Poirion (1995).

Using Eq. (48), the flutter equation (37) can be written under the form of a nonlinear eigenvalue system of

dimension 2mn:

0 I

�M*�1
gn ½Kn

gn þGnðpÞ� �M*�1
gn Cn

gn

" #
*qn

p*qn

( )
¼ p

*qn

p*qn

( )
; ð49Þ

or

HðpÞx ¼ px ð50Þ

with

Kn

gn ¼ Kgn þ 1
2
r
N

V2
N
A0

n; Cn

gn ¼ Cgn þ 1
2
r
N

cVNAn1;

Mn

gn ¼ Mgn þ 1
2
r
N

c2A2
n; GnðpÞ ¼ 1

2
r
N

VNpcDn½ðpc=VNÞI� Rn��1En:

The matrices GnðpÞ and HðpÞ are complex and depend on VN: The eigensolutions ðp; xÞ of Eq. (50) are computed for nV

increasing velocities V1
N
;y;VnV

N
: This nonlinear eigenvalue problem is solved using an iterative process based on the

method of successive approximations for finding a fixed point of a function (Appendix B).

To obtain the approximation Eq. (48), np auxiliary state variables *zn have been defined by

*zn ¼
pc

VN

pc

VN

I� Rn


 ��1
En *qn: ð51Þ

In the frequency domain, these auxiliary variables satisfy

p*zn ¼ ðVN=cÞRn *zn þ pEn *qn; ð52Þ

and they are solutions of a system of first-order differential equations in the time domain:

’znðtÞ ¼ ðVN=cÞRnznðtÞ þ En ’qnðtÞ: ð53Þ

The generalized aerodynamic forces are then written in the frequency and time domains as

*FagnðUn; pÞ*qn ¼ �1
2
r
N

V2
N

An0 þ
pc

VN

An1 þ
p2c2

V2
N

An2

� 	
*qn � 1

2
r
N

V2
N
Dn *zn; ð54Þ

fagnðUnqn;Un ’qnÞ ¼ �1
2
r
N

V2
N

An0qn þ
c

VN

An1 ’qn þ
c2

V2
N

An2 .qn þDnzn

� 	
: ð55Þ

Substituting Eq. (55) in the reduced coupled system Eq. (16) and combining with Eq. (53), we obtain a linear system of

second-order differential equations of dimension mn þ np:

Kn

gn
1
2 rNV2

N
Dn

0 ðVN=cÞRn

" #
qn

zn

( )
þ

Cn

gn 0

En �I

" #
’qn

’zn

( )
þ

Mn

gn 0

0 0

" #
.qn

.zn

( )
¼

fgn

0

( )
; ð56Þ

where Kn

gn; C
n

gn and Mn

gn are the same matrices as in Eq. (49).

The second-order system (56) is solved using the Newmark numerical integration scheme.

6. Numerical applications

The previously described coupling methods have been applied to a numerical model of a compressor disk composed

of 22 large chord blades, for different rotation speeds and phase angles.

The structural finite element model of a reference sector with one blade has 19 539 degrees of freedom. The

eigenfrequencies and modes in vacuum are computed by using the cyclic symmetry and by taking into account the

geometrical stiffness matrix due to the centrifugal stress generated by the rotation.

The aerodynamic computations were performed on a two-block structured grid, each block having 61� 18� 30

points with 60 points on the profile. Fig. 1 shows the mesh of one channel of the embedding fluid.

The different coupling methods used for the test cases are summarized in Table 1. In addition to the indirect coupling

methods described in this paper and for comparison, we also use the direct coupling method in the time domain where

the fluid and the structure motion equations are solved alternately at each time step.
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6.1. Case 1: O ¼ 4066:4 r:p:m:

This configuration is studied because of the availability of data resulting from a direct coupling numerical

computation. The simulations have been performed for the following aerodynamic conditions:

rotation speed; O ¼ 4066:4 r:p:m:;

upstream total temperature; Ti1 ¼ 288 K;

upstream total pressure; Pi1 ¼ 101 325 Pa;

pressure ratio; P2=Pi1 ¼ 1:05;

phase angle; s0 ¼ 0
:

8>>>>>><
>>>>>>:

The steady aerodynamic simulation gives for the inflow a Mach number of 0.5, a velocity of 166 m=s and a mass flow of

462:92 kg=s: Fig. 2, representing the steady pressure iso-surfaces on the boundaries of the domain, shows a shock whose
position depends on the applied pressure ratio. The coupled simulations are then performed under transonic conditions.

Table 1

Coupling methods used for the test cases

Coupling method Frequency domain Time domain Hypotheses

Indirect Double scanning Cases 1, 2 No Linearized aerodynamics,

coupling Smoothing Case 2 Cases 1, 2 harmonic motion

Direct coupling No Case 1

XY Z

Frame 001  2 Oct 2001  CANARI 

Fig. 1. Fluid mesh of the compressor blade.
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For the coupling computation, only the first two bending modes of the blade whose frequencies are 97:4 Hz (1F) and
204:3 Hz (2F) are retained to form the projection basis. Unsteady aerodynamic simulations are performed using the

mode shapes as oscillating motion shape for the frequencies given in Table 2.

For the coupling calculation, the blade is assumed not to have any structural damping. Fig. 3 shows the flutter

diagram obtained using the double scanning method with both upstream infinite velocity and mass flow on the

abscisses. No flutter can be seen in the upstream infinite velocity range from 130 to 250 m=s:
In order to perform a time simulation, a minimum state smoothing of the generalized aerodynamic forces is

performed with a relative error of 0.197%. The time increment is determined to have 60 time steps per period (second

mode). An initial velocity is applied to all generalized coordinates. Figs. 4 and 5 show the time evolution of both

generalized coordinates computed using three methods: the first method is the indirect coupling in the time domain

(smoothing method), the second one is a direct coupling numerical simulation using a grid deformation technique, and

the last one is a direct coupling numerical simulation using a blowing condition. The results from the three methods are

similar, although the aeroelastic damping computed with the direct simulation using the grid deformation technique is

quite a lot smaller than those computed with the other methods. The good agreement between the results of the

smoothing method and those of the direct coupling method with a blowing condition can be explained by the fact that

the generalized aerodynamic forces used in the smoothing method was also computed with a blowing condition. Table 3

gives the frequencies and the damping factors computed using the three methods. Moreover, the results from the

smoothing method in the time domain is similar to the one from the double scanning method in the frequency domain.

The time simulation has been performed for an upstream infinite velocity VN ¼ 166 m=s:

ARTICLE IN PRESS

Table 2

Case 1—excitation frequencies

Frequencies f (Hz) 5.28 79.25 97.4 105.7 184.9 204 211.3

Reduced frequencies k ¼ 2pf =VN 0.2 3.0 3.69 4.0 7.0 7.72 8.0

Y
X

Z

Ps
1.04206
0.996238
0.950414
0.904591
0.858767
0.812943
0.76712
0.721296
0.675472
0.629649
0.583825
0.538002
0.492178
0.446354
0.400531

Frame 001  2 Oct 2001  CANARI 

Fig. 2. Case 1—steady pressure.
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6.2. Case 2: O ¼ 4516:8 r:p:m:

A coupling calculation is performed on the same blade as previously at a higher rotation speed for two inter-blade

phase angles, s0 ¼ 0
 and s1 ¼ 360
=22: The only changes in the aerodynamic conditions are:

rotation speed; O ¼ 4516:8 r:p:m:;

pressure ratio; P2=Pi1 ¼ 1:12:

(
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For the inlet flow, the Mach number is 0.5, the velocity is 166 m=s and the mass flow is 487:95 kg=s: Like in the previous
case, the coupled simulations are performed under transonic conditions.

A first coupling calculation is performed for an inter-blade phase angle s0 ¼ 0
: The projection basis is formed by the
first two bending modes and the first torsion modes whose frequencies are respectively 101:7 Hz (1F), 212:8 Hz (2F) and
448:9 Hz (1T). Unsteady generalized aerodynamic forces are computed at the frequencies given in Table 4.

The blade is still assumed to not have any structural damping. Figs. 6 and 7 show the flutter diagrams obtained with

the double scanning and the smoothing methods. Both methods give similar results: the blade is stable in the upstream

infinite velocity range from 100 to 250 m=s:
A time simulation is performed for an upstream infinite velocity VN ¼ 166 m=s with the minimum state smoothing

method. The aerodynamic forces are approximated using 6 poles with a relative error of 1.13%. The time increment is
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Fig. 5. Case 1—time evolution of q2:

Table 3

Case 1—frequencies (Hz) and damping factors of q1 and q2 (VN ¼ 166 m=sÞ

Time domain Frequency domain

Smoothing Direct (grid deform.) Direct (blowing) Double scanning

Frequency Damping Frequency Damping Frequency Damping Frequency Damping

q1 96.70 0.0082 96.94 0.0061 96.54 0.0077 96.69 0.0085

q2 203.21 0.0056 203.47 0.0025 203.54 0.0048 203.13 0.0057

Table 4

Case 2, phase angle s0—excitation frequencies

Frequencies f (Hz) 0 5.0 70.0 101.7 230.1 448.9 600.0

Reduced frequencies k ¼ 2pf =VN 0 0.185 2.59 3.755 8.5 16.58 22.16
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determined to have 60 time steps per period (third mode). Fig. 8 shows the time evolution of the three generalized

coordinates q1; q2 and q3: Table 5 shows a Fourier analysis of those signals. The resulting frequencies and

damping factors are similar to those obtained from the computation in the frequency domain (double scanning

method).

A coupling calculation is now performed for an inter-blade phase angle s1 ¼ 1� 360
=22: The method is then tested
for a nonzero phase angle and for a complex projection basis. The latter is formed by the first two bending modes and

the first torsion mode whose frequencies are respectively 105 Hz (1F), 191:8 Hz (2F) and 278:3 Hz (1T). Generalized
aerodynamic forces are computed for the frequencies given in Table 6.

Fig. 9 shows the flutter diagram resulting from a computation using the double scanning method. As in the zero

phase angle case, the blade is stable in the upstream infinite frequency range from 100 to 250 m=s:
A time calculation is performed for an upstream infinite velocity VN ¼ 166 m=s: The time increment is determined to

have 60 time steps per period (third mode). The smoothing method uses 8 poles and gives a relative error of 1.18%.

Figs. 10 and 11 show the time evolution of the three generalized coordinates. Table 7 shows the Fourier analysis of the

signals. As for a zero phase angle, the frequencies and the damping factors resulting from the computations in the time

domain (smoothing method) and in the frequency domain (double scanning method) are similar.
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Fig. 6. Case 2, phase angle s0—flutter diagram (double scanning).
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7. Conclusion

Two fluid–structure coupling methods for a rotating bladed disk system based on the cyclic symmetry properties and

the projection on the complex modes are presented. The double scanning and the minimum state smoothing methods

ARTICLE IN PRESS

0 0.05 0.1 0.15 0.2 0.25 0.3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

-5

Time (s)

G
en

er
al

iz
ed

 c
oo

rd
in

at
es

 q
1

 q
2

 q
3

Fig. 8. Case 2, phase angle s0—time evolution of generalized coordinates.

Table 5

Case 2, phase angle s0—frequencies (Hz) and damping factors ðVN ¼ 166 m=sÞ

Time domain (Smoothing) Frequency domain (Double scanning)

Frequency Damping Frequency Damping

q1 101.02 0.0080 100.96 0.0080

q2 101.02 0.0080

212.18 0.0062 211.86 0.0063

q3 101.02 0.0075

212.19 0.0069

447.00 0.0069 447.21 0.0073

Table 6

Case 2, phase angle s1—excitation frequencies

Frequencies f (Hz) 10.0 20.0 50.0 105.3 139 191.8 278.3 350.0

Reduced frequencies k ¼ 2pf =VN 0.37 0.74 1.85 3.89 5.26 7.08 10.28 12.93
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can both be used for solving the flutter equation in the frequency domain, while the time response is computed by

modelling the generalized aerodynamic forces using the minimum state smoothing method. The proposed methods are

tested on a compressor blade row in order to determine the aeroelastic stability of the system in function of the velocity

or the mass flow of the upstream unperturbed fluid. In the velocity range of interest around the nominal value, both

frequency-domain methods provide similar aeroelastic frequencies and damping factors. These latter also correspond to

the ones obtained from the time-domain simulation and from the direct coupling method.
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The double scanning method is more robust but it is only applicable for solving the flutter equation in the frequency

domain. The minimum state smoothing method can be used for both frequency and time domain simulations but its

implementation is more complex and it requires more attention and know-how from the user. The main advantage of

the proposed indirect coupling method in the time domain is that it is generally less time consuming than the direct

coupling method since the aerodynamic calculations are performed only once at the beginning of the simulation and not

at each time step. Therefore, the aerodynamic forces do not need to be computed again if the modes that generate them

are unchanged and they can be re-used for other computations, for example when the applied external forces change or

when we want to study the influence of a friction damper on the stability of the bladed disk. However, the proposed

indirect coupling method is more restrictive and less accurate since it is based on the assumptions of linearized

aerodynamics and harmonic motion, which is not the case of the direct coupling method.

The good agreement between the results of the different methods shows that the extension of the proposed coupling

methods from aircraft applications to turbomachinary is feasible. However, further validation tests should be carried

out under various conditions such as other rotation speeds, phase angles, pressure ratios, viscous fluid, etc.

The future work will consist in: numerical simulations of an unstable configuration with comparison to experimental

results in order to test the flutter prediction capability; numerical simulations with structural nonlinearities such as
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Fig. 11. Case 2, phase angle s1—time evolution of q3:

Table 7

Case 2, phase angle s1—frequencies (Hz) and damping factors ðVN ¼ 166 m=sÞ

Time domain (smoothing) Frequency domain (Double scanning)

Frequency Damping Frequency Damping

q1 104.92 0.0092 104.14 0.0091

q2 104.21 0.0092

191.34 0.0031 191.42 0.0034

q3 104.23 0.0089

191.35 0.0031

277.40 0.0022 277.73 0.0023
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free-play or friction by using the Craig and Bampton projection basis; the introduction of the mistuning of the blades, in

which case the cyclic symmetry properties are no longer applicable and model reduction methods such as component

mode synthesis will be used instead.

Appendix A. Approximation of the aerodynamic coefficient matrix

This appendix describes the computation of the matrices An0;An1;An2;Dn;Rn and En in the approximation equation

(48) of the aerodynamic coefficient matrix *An from the tabulated matrices *AnðUn; ikÞ obtained for nk reduced

frequencies k ¼ k1;y; knk : This is done by using a method of least squares minimization (Poirion, 1995).

For each ði; jÞ-term of the matrix *An; we define the error eij ; for i; j ¼ 1;y;mn:

eij ¼
1

Mij

Xnk

k¼1

jwij;k½ *AnðUn; ikkÞ � An0 � ðikkÞAn1 � ðikkÞ
2 An2 � ðikkÞDn½ðikkÞI� Rn��1En�ij j

2;

where Mij ¼ maxnk
k¼1ð1; j *An;ijðUn; ikkÞj2Þ and wij;k are normalization coefficients which allow some reduced frequencies or

some modes to be privileged compared to the others.

The following steps are performed:

(i) put An0 ¼ *AnðUn; 0Þ; the steady state aerodynamic coefficient matrix obtained with the reduced frequency equal to

zero;

(ii) choose arbitrarily the matrix Dn; the number of poles np and the negative poles r1;y; rnp
which are the terms of the

diagonal matrix Rn;
(iii) for successively each value of j ¼ 1;y;mn and with Dn fixed, compute the jth columns of An1;An2 and En; which

are the solutions of mn simultaneous least-squares problems which minimize eij for i ¼ 1;y;mn (linear system of

ð2þ npÞmn equations and 2mn þ np unknowns);

(iv) for successively each value of i ¼ 1;y;mn and with En fixed, compute the ith rows of An1;An2 and Dn; which are

the solutions of mn simultaneous least-squares problems which minimize eij for j ¼ 1;y;mn (linear system of

ð2þ npÞmn equations and 2mn þ np unknowns);

(v) repeat steps 3 and 4 until the convergence on the cost function J ¼ ð
P

ij eijÞ
1=2 is obtained.

The method can diverge, depending on the initial values of the poles. The latter are generated at random while the

number of poles np should be at least mn þ 1:

Appendix B. Fixed point method for nonlinear eigenvalue problem

This appendix describes the iterative process of the fixed point method for finding the eigensolutions ðp; xÞ the
nonlinear eigenvalue problem Eq. (50) for nV increasing velocities V1

N
;y;VnV

N
: For each velocity Vk

N
; the following

eigenvalue problems are solved for i ¼ 1;y; 2mn and j ¼ 0; 1; 2;y; until convergence on pi is obtained:

Hðpi;jÞxi;jþ1 ¼ pi;jþ1xi;jþ1;

where ðpi;j ; xi;jÞ is the ith eigensolution obtained at the jth iteration. The eigensolutions obtained for Vk
N

will be used as

the initialization of the iterative process for Vkþ1
N

: The initialization for V1
N

is the solution of Eq. (50) in vacuum in

which case the iterative process is not necessary.

Let us suppose that the eigensolutions for V1
N
;y;Vk

N
and the first i eigensolutions ðpkþ1

1 ; xkþ1
1 Þ;y; ðpkþ1

i ; xkþ1
i Þ for

Vkþ1
N

have been obtained and we are now computing the ði þ 1Þth eigensolution. The iteration process starts with

pkþ1
iþ1;0 ¼ pk

iþ1; the ði þ 1Þth eigenvalue obtained for Vk
N
: At the jth iteration, the following operations are done:

(i) computation of the eigensolutions ðpkþ1
1;j ; xkþ1

1;j Þ;y; ðpkþ1
2mn ;j

; xkþ1
2mn ;j

Þ of Hðpkþ1
iþ1;j�1Þ;

(ii) eigenvector follow-up procedure which consists in finding out the eigenvector xkþ1
l;j which minimizes the distance to

xk
iþ1; the ði þ 1Þth eigenvector obtained for Vk

N
; i.e., xkþ1

l;j should satisfy j/xkþ1
l;j ; xk

iþ1Sj ¼ max2mn

l0¼1 j/xkþ1
l0 ;j ; xk

iþ1Sj; the
eigenvectors having unit norm (with the scalar product /x; yS ¼ t %xy and the norm jjxjj ¼

ffiffiffiffiffiffiffi
t %xx

p
Þ;

(iii) test on the selected eigenvalue pkþ1
l;j to verify that it does not correspond to one of the first i eigenvalues previously

found, i.e., it should satisfy mini
l0¼1 ðjp

kþ1
l;j � pkþ1

l0 j=jpkþ1
l;j jÞ > e1: Otherwise, pkþ1

l;j was already found, the lth

eigensolution is eliminated and step 2 is repeated;
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(iv) the ði þ 1Þth eigensolution at the jth iteration being selected, test on the convergence of the eigenvalue; the iterative

process will stop if jpkþ1
iþ1;j � pkþ1

iþ1;j�1j=jp
kþ1
iþ1;j jpe2;

(v) if the convergence is slow, the eigenvalue can be updated by a relaxation technique by using crp
kþ1
iþ1;jþ

ð1� crÞpkþ1
iþ1;j�1 instead of pkþ1

iþ1;j for computing the matrix HðpÞ in the next iteration, where crA½0; 1� is the relaxation
coefficient.
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